Nano tools for macro problems: multiscale molecular modeling of nanostructured polymer systems
نویسندگان
چکیده
A current challenge of physical, chemical, and engineering sciences is to develop theoretical tools for predicting structure and properties of complex materials from the knowledge of a few input parameters. In this work, we present a general multiscale molecular simulation protocol for predicting morphologies and properties of nanostructured polymer systems and we apply it to three examples of industrial relevance. The first example is of general importance for the polymer industry and is related to the enhancement of mechanical and barrier properties, if a nanofiller is dispersed into a polymer matrix: the role of multiscale modeling for the development of the material in the stage of screening, the best design is evidenced. The second example, important for the optoelectronic industry, is related to the prediction of the dispersion of gold nanoparticles into a diblock copolymer system forming different nanostructures (lamellae, cylinders, ...). In this case, it is relevant to understand how it is possible to influence the self-assembly of the nanoparticles in different regions of the diblock copolymer structure. The third example is of interest to automotive and polymer industries and involves inorganic nanoparticles grafted with organic side chains. The assembly is dispersed in a polymeric matrix and it is interesting to predict the effect of the chain length and grafting density on the nanostructure.
منابع مشابه
Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملultiscale molecular modeling in nanostructured material design and process
Atomistic-based simulations such as molecular mechanics, molecular dynamics, and Monte Carlo-based methods have come into wide use for material design. Using these atomistic simulation tools, we can analyze molecular structure on the scale of 0.1–10 nm. However, difficulty arises concerning limitations of the time and length scale involved in the simulation. Although a possible molecular struct...
متن کاملInvestigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach
In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...
متن کاملSeamless Multiscale Modeling of Complex Fluids Using Fiber Bundle Dynamics
We present a seamless multiscale model and an efficient coupling scheme for the study of complex fluids. The multiscale model consists of macroscale conservation laws for mass and momentum, molecular dynamics on fiber bundles, as well as the Irving-Kirkwood formula which links the macroscale stress tensor with the microscopic variables. The macroscale and microscale models are solved with a mac...
متن کاملDesign of Sustainable Multifunctional Nanocoatings: A Goal-driven Multiscale Systems Approach
Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing ...
متن کامل